二阶矩阵特征多项式展开公式
一般而言,对布于任何交换环上的方阵都能定义特征多项式。
要理解特征多项式,首先需要了解一下特征值与特征向量,这些都是联系在一起的:设A是n阶矩阵,如果数λ和n维非零列向量x使得关系式Ax=λx成立,那么,这样的数λ就称为方阵A的特征值,非零向量x称为A对应于特征值λ的特征向量。
然后,我们也就可以对关系式进行变换:(A-λE)x=0 其中E为单位矩阵。这是n个未知数n个方程的齐次线性方程组,它有非零解的充要条件是系数行列式为0,即|A-λE|=0。带入具体的数字或者符号,可以看出该式是以λ为未知数的一元n次方程,称为方阵A的特征方程,左端 |A-λE|是λ的n次多项式,也称为方阵A的特征多项式。
-
已知正方体的体积求棱长公式
上一篇
-
2乘2列联表公式
下一篇