当前位置:首页 > 教案 >

模板函数(精品4篇)

小问君教案不懂就问2023-09-04

模板函数(1)

九年级数学二次函数复习课说课稿模板

二次函数复习课说课稿

一、教材分析

1.地位和作用

(1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一.二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届淮安市中考试题中,二次函数都是不可缺少的内容。

(2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。

(3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通.

2.课标要求:

①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。

③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题。

④会利用二次函数的图象求一元二次方程的近似解。

3.学情分析

(1)初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。

(2)学生的分析、理解能力较学习新课时有明显提高。

(3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。

(4)学生能力差异较大,两极分化明显。

4.教学目标

认知目标

(1)掌握二次函数 y=ax2+bx+c图像与系数符号之间的关系。

通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力.

能力目标

提高学生对知识的整合能力和分析能力.

情感目标

制作动画增加直观效果,激发学生兴趣,感受数学之美.在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

5.教学重点与难点:

重点:(!)掌握二次函数y=ax2+bx+c图像与系数符号之间的.关系。

(2) 各类形式的二次函数解析式的求解方法和思路.

难点:(1)已知二次函数的解析式说出函数性质

(2)运用数形结合思想,选用恰当的数学关系式解决几何问题.

二、教学方法:

1.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知心理和已有的认知水平开展教学.形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

2.将知识点分类,让学生通过这个框架结构很容易看出不同解析式表示的二次函数的内在联系,让学生形成一个清晰、系统、完整的知识网络。

三、学法指导:

1.学法引导

“授人之鱼,不如授人之渔”在教学过程中,不但要传授学生基本知识,还要培育学生主动思考,亲自动手,自我发现等能力,增强学生的综合素质。

2.学法分析:新课标明确提出要培养“可持续发展的学生”,因此教师有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

四、教学过程:

1、教学环节设计:

根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.

本节课的教学设计环节:

创设情境,引入新知:复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”。学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了6个由浅入深的例题.让每一个学生都能为下一步的探究做好准备。

自主探究,合作交流:本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。

运用知识,体验成功:根据不同层次的学生,同时配有两个由低到高、层次不同的巩固性习题,体现渐进性原则,希望学生能将知识转化为技能。让每一个学生获得成功,感受成功的喜悦。

安排三个层次的练习。

(一)课前预习

(二)典型例题分析

通过反馈使学生掌握重点内容。

(三)综合应用能力提高

既培养学生运用知识的能力,又培养学生的创新意识。引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。


模板函数(2)

对数函数的图像与性质优秀说课稿模板

一、说教材

1、教材的地位和作用

函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数在生产、生活实践中都有许多应用.本节课的学习使学生的.知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识.

2、教学目标的确定及依据

根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

(1) 知识目标:理解对数函数的意义;掌握对数函数的图像与性质;初步学会用

对数函数的性质解决简单的问题.

(2) 能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、

分析、归纳等逻辑思维能力.

(3) 情感目标:通过指数函数和对数函数在图像与性质上的对比,使学生欣赏数

学的精确和美妙之处,调动学生学习数学的积极性.

3、教学重点与难点

重点:对数函数的意义、图像与性质.

难点:对数函数性质中对于在a>1与0

二、说教法

学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

1、教学方法:

(1)启发引导学生实验、观察、联想、思考、分析、归纳;

(2)采用“从特殊到一般”、“从具体到抽象”的方法;

(3)渗透类比、数形结合、分类讨论等数学思想方法.

2、教学手段:

计算机多媒体辅助教学.

三、说学法

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)类比学习:与指数函数类比学习对数函数的图像与性质.

(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索。

归纳得出对数函数的图像与性质.

(3)主动合作式学习:学生在归纳得出对数函数的图像与性质时,通过小组讨论。

使问题得以圆满解决.

四、说教程

1、温故知新

我通过复习细胞分裂问题,由指数函数 引导学生逐步得到对数函数的意义及对数函数与指数函数的关系:互为反函数.

设计意图:既复习了指数函数和反函数的有关知识,又与本节内容有密切关系。

有利于引出新课.为学生理解新知清除了障碍,有意识地培养学生

分析问题的能力.

2、探求新知


模板函数(3)

有关一次函数教学设计模板

篇一:一次函数全章教案_新人教版

19.1.1变量

教具;课件* 直尺*三角板 教学目标

知识与技能:理解变量与函数的概念以及相互乊间的兲系。增强对变量的理解

过程与方法:师生互动*讲练结合

情感态度世界观:渗透事物是运动的*运动是有规律的辨证思想 重点:变量与常量 难点:对变量的判断

教学媒体:多媒体电脑*绳圈,

教学说明:本节渗透找变量乊间的简单兲系*试列简单兲系式 教学设计: 引入:

信息1:当你坐在摩天轮上时*想一想*随着时间的变化*你离开地面的高度是如何变化的<

信息2:汽车以60km/h的速度匀速前迚*行驶里程为skm*行驶的时间为th*先填写下面的表格*在试用含t的式子表示s.

新课:

问题:(1)每张电影票的售价为10元*如果早场售出票150张*日场售出票205张*晚场售出票310张*三场电影的票房收入各多少元<设一场电影受出票x张*票房收入为y元*怎样用含x的式子表示y?

(2)在一根弹簧的下端悬挂中重物*改变幵记彔重物的质量*观察幵记彔弹簧长度的变化规律*如果弹簧原长10cm*每1kg重物使弹簧伸长0.5cm*怎样用含重物质量 m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)<

(3)要画一个面积为10cm2的圆*圆的半径应取多少<圆的面积为20cm2呢<怎样用含圆面积S的式子表示圆的半径r?

(4)用10m长的绳子围成长方形*试改变长方形的长度*观察长方形的面积怎样变化。记彔不同的长方形的长度值*计算相应的长方形面积的值*探索它们的变化规律*设长方形的长为xm,面积为Sm2,怎样用含x的式子表示S<

在一个变化过程中*我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。

挃出上述问题中的变量和常量。

范例:写出下列各问题中所满足的兲系式*幵挃出各个兲系式中*哪些量是变量*哪些量是常量<

(1) 用总长为60m的篱笆围成矩形场地*求矩形的面积S(m2)与

一边长x(m)乊间的兲系式;

(2) 购买单价是0.4元的铅笔*总金额y(元)与购买的铅笔的数

量n(支)的兲系;

(3) 运动员在4000m一圈的跑道上训练*他跑一圈所用的时间t(s)

与跑步的速度v(m/s)的兲系;

(4) 银行规定:五年期存款的年利率为2.79%,则某人存入x元本金

与所得的本息和y(元)乊间的兲系。

活动:1.分别挃出下列各式中的常量与变量.

(1) 圆的面积公式S=πr2; (2) 正方形的l=4a;

(3) 大米的单价为2.50元/千克*则购买的大米的数量x(kg)与金额

与金额y的兲系为y=2.5x.

2.写出下列问题的'兲系式*幵挃出不、常量和变量.

(1) 某种活期储蓄的月利率为0.16%,存入10000元本金*按国家

规定*取款时*应缴纳利息部分的20%的利息税*求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x乊

间的兲系式.

(2) 如图*每个图中是由若干个盆花组成的图案*每条边

(包括两个顶点)有n盆花*每个图案的花盆总数是S*求S与n乊间的兲系式

思考:怎样列变量乊间的兲系式<小结:变量与常量

19.1.2函数

教具 课件* 直尺*三角板

知识与技能:理解函数的概念*能准确识别出函数兲系中的自变量和函数

会用变化的量描述事物

过程与方法:师生互动*讲练结合

情感态度世界观:回用运动的观点观察事物*分析事物 重点:函数的概念 难点:函数的概念

教学媒体:多媒体电脑*计算器

教学说明:注意区分函数与非函数的兲系*学会确定自变量的取值范围 教学设计: 引入:

信息1:小明在14岁生日时*看到他爸爸为他记彔的以前各年周岁时体重数值表*你能看出小明各周岁时体重是如何变化的吗<

篇二:一次函数表格式教学设计

教学目标:

1、进一步理解一次函数和正比例函数的意义;

2、会画一次函数的图象,并能结合图象进一步研究相关的性质;

3、巩固一次函数的性质,并会应用。

教学重点:复习巩固一次函数的图象和性质,并能简单应用。 教学难点:在理解的基础上结合数学思想分析、解决问题。 学法:自主探究、合作交流。

教学准备:多媒体课件。

教学过程:

一、 知识回顾:

1、独立填空,交流纠错、讲解、补充。

当k为( )时,函数y=kx+4k-2 为正比例函数。

当k( )时,函数y=kx+4k-2 为一次函数。

引出知识点1:一次函数与正比例函数的概念(课件展示)

从解析式上看两者有何关系?正比例函数是特殊的一次函数,一次函数包含正比例函数。一次函数当k≠0, b= 0时是正比例函数。

2、学生画函数y=x-1的图象,说出画法,经过的象限以及变化趋势。 引出知识点2、3:一次函数的图象和性质(课件展示)

形状;一次函数的图象是一条直线。

画法:确定两个点就可以画一次函数图象。一次函数与x轴的交点坐标(-b/k ,0),与y轴的交点坐标(0, b ).

性质以及一次函数与正比例函数的图象关系。直线y=kx+b 可以看作是由直线y=kx 平移︱b ︱个单位得到的,当 b>0时,向 上 平移b个单位;当 b<0时,向 下 平移︱b ︱个单位。

说出一些一次函数的解析式,让学生迅速说出图象性质。

3、如果只有函数图像经过的点,能求出函数的解析式吗?

已知某一个函数的图象经过点P(3,5)和Q(-4,-9),求这个一次函数的解析式。学生完成填空。(课件展示)

引出知识点4:待定系数法确定一次函数解析式。

应用:已知一次函数y=kx+b(k≠0)满足当-1≤x≤3时,0≤y≤8,你能求出此一次函数的解析式吗?

先独立思考,然后相互交流,补充完整。指两名学生板演。 二:夯实基础:(课件展示)

1、一次函数y=-2x+4的图象经过( )象限,y随x的增大而( ),它的图像与x轴、y轴的坐标分别为( ),( ).

2、若一次函数y=(4-2m)x+2的图象经过A(x1,y1) 、B(x2,y2)两点,当x1<x2时,y1>y2,则m的取值范围是_____。

3、一次函数y=kx+b中,kb>0,且y随x的增大而减小,则它的图像大致是( )。

4.将函数y=-6x的图象a向上平移5个单位得到直线b.求直线b与两坐标轴所围成的三角形的面积。

指一名学生上台板演,其余学生经过独立完成、小组交流,然后集体订正。

三、 能力提升:

挑战自我:(课件展示)

已知函数y=kx+b的图象与另一个一次函数y=-2x-1的图象相交于y轴上的点A,且x轴下方的一点B(3,n)在一次函数y=kx+b的图象上,n满足关系n2=9.求这个函数的解析式.

学生先读题,获取信息,进行分析,独立思考后,可以小组交流,然后尝试解答。教师适时点拨。

四、课后小结:(课件展示)

这节课你学得愉快吗?都有哪些收获?你是否对一次函数的图象和性质有了进一步认识?


模板函数(4)

对数函数教案模板

教学目标:

(一)教学知识点:1.对数函数的概念;2.对数函数的图象和性质.

(二)能力训练要求:1.理解对数函数的概念;2.掌握对数函数的图象和性质.

(三)德育渗透目标:1.用联系的观点分析问题;2.认识事物之间的互相转化.

教学重点:

对数函数的图象和性质

教学难点:

对数函数与指数函数的关系

教学方法:

联想、类比、发现、探索

教学辅助:

多媒体

教学过程:

一、引入对数函数的概念

由学生的预习,可以直接回答“对数函数的概念”

由指数、对数的定义及指数函数的概念,我们进行类比,可否猜想有:

问题:1.指数函数是否存在反函数?

2.求指数函数的反函数.

①;

②;

③指出反函数的定义域.

3.结论

所以函数与指数函数互为反函数.

这节课我们所要研究的便是指数函数的反函数——对数函数.

二、讲授新课

1.对数函数的定义:

定义域:(0,+∞);值域:(-∞,+∞)

2.对数函数的图象和性质:

因为对数函数与指数函数互为反函数.所以与图象关于直线对称.

因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.

研究指数函数时,我们分别研究了底数和两种情形.

那么我们可以画出与图象关于直线对称的曲线得到的图象.

还可以画出与图象关于直线对称的曲线得到的图象.

请同学们作出与的草图,并观察它们具有一些什么特征?

对数函数的图象与性质:

图象

性质(1)定义域:

(2)值域:

(3)过定点,即当时。

(4)上的增函数

(4)上的减函数

3.图象的.加深理解:

下面我们来研究这样几个函数:.

我们发现:

与图象关于X轴对称;与图象关于X轴对称.

一般地,与图象关于X轴对称.

再通过图象的变化(变化的值),我们发现:

(1)时,函数为增函数。

(2)时,函数为减函数。

4.练习:

(1)如图:曲线分别为函数,的图像,试问的大小关系如何?

(2)比较下列各组数中两个值的大小:

(3)解关于x的不等式:

思考:(1)比较大小:

(2)解关于x的不等式:

三、小结

这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.

四、课后作业

课本P85,习题2.8,1、3

本站文章均来自互联网,仅供学习参考,如有侵犯您的版权,请邮箱联系我们删除!

猜你喜欢

  • 蛋糕美术教案(汇总19篇)

    蛋糕美术教案(1)活动目标:1.体验刮画纸的神奇、有趣,激发幼儿对美术活动的热爱。2.知道刮画纸和竹笔的使用方法,并尝试运用。3.能画出蛋糕的轮廓,会用波浪纹、圆形等简单图案进行装饰。4.引导孩子

    4考试2023-04-28
  • 关于青春的故事(精编16篇)

    关于青春的故事(1)青春像人体内涌动的血液,奔腾涌浪,昼夜不停。就像那崭新的机器,发出锃亮的光芒;就像那早晨九点钟的太阳,那么鲜活明亮;就像那胜不骄,败不馁的齐天大圣,永远充满着活力与勇气。。。

    5考试2023-04-28
  • 酒店安全协议(合集9篇)

    酒店安全协议(1)甲方:xxxxx组装饰项目部乙方:身份证:为加强施工现场的标化管理,落实各项工作责任制,充分调动员工的积极性。确保安全、文明施工、环保卫生等工作达到预期目标。认真贯彻执行党和国家

    1合同2023-05-13
  • 感恩的名言佳句(热门6篇)

    感恩的名言佳句(1)1、慈母爱子,非为报也。〖汉〗刘安2、十月胎恩重,三生报答轻。《劝孝歌》3、一尺三寸婴,十又八载功。《劝孝歌》4、母称儿干卧,儿屎母湿眠。《劝孝歌》5、母苦儿未见,儿劳母不安。

    2考试2023-05-03
  • 武汉樱花5月还有吗

    每年春季的时候,很多地方都会有樱花盛开,武汉的樱花就是其中比较出名的,尤其是武大的樱花。一般情况下,武汉的樱花是在3月份盛开,在三月中下旬的时候是最佳的观赏期,等到4月份就要凋谢了,所以到5月份基本上没有多少樱花了。

    3生活2023-03-18
  • 高考数学易错点整理及解题的方法技巧

    错因分析等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q=?1时,前n项和公式Sn=a1(1

    4考试2023-04-24
  • 店转让合同范本(集合15篇)

    店转让合同范本(1)转让方(以下简称甲方):身份证号码:顶让方(以下简称乙方):身份证号码:房东(以下简称丙方):身份证号码:甲、乙、丙三方经友好协商,就店铺转让事宜达成以下协议:一、丙方同意甲方将自己位于___

    5合同2023-04-17
  • 房屋租赁协议续租协议(推荐8篇)

    房屋租赁协议续租协议(1)致______:您好!贵方与______(以下简称“我方”),于______年______月签订《房屋租房合同》,约定贵方租赁我方位于的房屋,面积______,租期年,从______年______月______日至______

    2合同2023-04-18
  • 仓库盘点制度(优质10篇)

    仓库盘点制度(1)1目的规范仓储物资管理,有效降低库存,及时处理存货、盘活公司资产,确保账、卡、物相符。2适用范围本制度适用于浙江美欣达印染集团股份有限公司坯布(原坯、割绒坯)和成品仓库盘点

    5求职2023-05-16
  • 房买卖合同完整版(热门5篇)

    房买卖合同完整版(1)卖方(以下简称甲方):买方(以下简称乙方):根据《合同法》、《城市房地产管理法》及相关法律规定,甲、乙双方在平等、自愿、协商一致的基础上,就乙方向甲方购买房屋达成如下协议,

    3合同2023-04-18