函数模板(汇集4篇)
函数模板(1)
课题:歌曲《木瓜恰恰恰》
教学目标:
1、能够用热情、欢快的声音演唱《木瓜恰恰恰》,感受歌曲的欢快情绪和喜悦心情。
2、能够用打击乐器为歌曲伴奏。
3、用叫卖的演唱形式表达歌曲,了解一些相关文化以及“叫卖”的艺术形式。
教学重点及难点:
1、用热情、欢快的声音演唱《木瓜恰恰恰》。
2、正确地演唱《木瓜恰恰恰》的弱起小节及切分节奏。教学准备:多媒体(ppt)、flash动画、歌曲(mp3)、打击乐器(沙锤、双响筒、碰铃等)
教学过程:
一、播放《卖汤圆》和《冰糖葫芦》,学生走进教室。让学生感受叫卖调(欢快、活泼、幽默、诙谐)
导课:师:同学们,刚才听的歌曲你们熟悉吗?你们知道是卖什么的?像这种类型的歌曲叫什么歌?介绍叫卖歌。今天,咱们学习一首印尼叫卖歌曲《木瓜恰恰恰》板书课题。
二、走入印尼国家
1、师:印尼是哪个国家?知道吗?(印度尼西亚)。你们想去看看吗?师:印度尼西亚,是“水中岛国”,是由许多大小岛屿组成的群岛国家,又称“千岛之国”。这里火山活跃,又被称为“火山之国”。该国家盛产水果。它的首都是雅加达,有“歌舞之邦”的美称,生活在各岛上的100多个民族都有自己独特的民歌、舞蹈和乐器,各族人民都非常热爱音乐,尤其在印度尼西亚的著名旅游胜地——巴厘岛,舞蹈已成为人民生活的一部分。
师:你们感受到印尼美吗?(学生答)
2、出示印尼水果市场
师:我们又来到了哪里?(水果市场)印度尼西亚的水果特别多,集市上到处都有各种各样的水果,可真是琳琅满目。到处都有吆喝声叫卖水果声。咱们有没有兴趣来学学各种叫卖声,看谁的叫卖声最能吸引顾客来光顾。
二、感受歌曲,解决重难点
1、播放《木瓜恰恰恰》flash动画
师:歌曲给你带来什么感受?(欢快、活泼、高兴等)
2、范唱歌曲
师:你听出来歌曲中唱到哪些水果?(番石榴、菠萝等)
3、介绍弱起小节和切分音
4、跟老师一起读有节奏的叫卖声,双手拍腿
“有番石榴,有菠萝,有芒果,有香蕉,有榴莲,还有苹果—0嗨快来吧,快来吧,快来吧,快来吧,再不买就卖完了—”。师:咱们唱一唱,边唱边拍腿,行吗?师:同学们唱得真好,给自己一个掌声。出示节奏:X X | X .X X X X X ∣X—师:你能读出来吗?咱们读一读,拍一拍
3、再次听歌曲(mp3)感受恰恰韵律。师:同学们听出来了吗?这首歌哪儿最有特点?生:恰恰恰
师:这个恰恰恰是轻快的还是笨重的?出现在每个乐句的前面还是末尾?(师生一起说“恰恰恰”。)
4、师生一起随着歌声唱唱轻快的“恰恰恰”。(“恰恰恰”声音要求轻巧、有弹性)
5.如果让你给这段歌声加上伴奏的话,你觉得在哪儿加比较合适?(生略)让我们拿起自己制作的沙锤或其他打击乐器为音乐加上伴奏。
6、师:除了用乐器还可以用什么来表现恰恰恰韵律(扭胯)
7、我们一起边说边做,看谁的动作既能合上音乐的感觉又和别人都不一样(师生共同扭胯)。(发现较好学生,请她上台带领同学们再来一次。)
8、师:刚才我们又唱又跳,真开心!师:下面我们来学唱这首歌
四、学唱歌曲
1、让学生用“啦”哼唱歌曲
2、跟琴学唱歌谱
3、完整演唱歌谱
4、按节奏读歌词
5、教唱歌词
6、完整演唱歌曲
五、用多种形式表演歌曲
分组唱:一组唱,另一组打节奏。
师生合作:跟伴奏,边唱边表演打节奏。
教师小结
师:今天,我们通过对叫卖歌曲的学习,了解了叫卖歌曲的特点,这些极富情趣的演唱给了我们极大的艺术享受。其实啊,这些音乐都来源于我们的生活,只要你多做有心人,你也一定可以创作出动听有趣的音乐。好,今天的音乐课我们就上到这里,下课。
函数模板(2)
九年级数学二次函数复习课说课稿模板
二次函数复习课说课稿
一、教材分析
1.地位和作用
(1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一.二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届淮安市中考试题中,二次函数都是不可缺少的内容。
(2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。
(3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通.
2.课标要求:
①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。
②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。
③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题。
④会利用二次函数的图象求一元二次方程的近似解。
3.学情分析
(1)初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。
(2)学生的分析、理解能力较学习新课时有明显提高。
(3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。
(4)学生能力差异较大,两极分化明显。
4.教学目标
认知目标
(1)掌握二次函数 y=ax2+bx+c图像与系数符号之间的关系。
通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力.
能力目标
提高学生对知识的整合能力和分析能力.
情感目标
制作动画增加直观效果,激发学生兴趣,感受数学之美.在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。
5.教学重点与难点:
重点:(!)掌握二次函数y=ax2+bx+c图像与系数符号之间的.关系。
(2) 各类形式的二次函数解析式的求解方法和思路.
难点:(1)已知二次函数的解析式说出函数性质
(2)运用数形结合思想,选用恰当的数学关系式解决几何问题.
二、教学方法:
1.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知心理和已有的认知水平开展教学.形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。
2.将知识点分类,让学生通过这个框架结构很容易看出不同解析式表示的二次函数的内在联系,让学生形成一个清晰、系统、完整的知识网络。
三、学法指导:
1.学法引导
“授人之鱼,不如授人之渔”在教学过程中,不但要传授学生基本知识,还要培育学生主动思考,亲自动手,自我发现等能力,增强学生的综合素质。
2.学法分析:新课标明确提出要培养“可持续发展的学生”,因此教师有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。
四、教学过程:
1、教学环节设计:
根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.
本节课的教学设计环节:
创设情境,引入新知:复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”。学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了6个由浅入深的例题.让每一个学生都能为下一步的探究做好准备。
自主探究,合作交流:本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。
运用知识,体验成功:根据不同层次的学生,同时配有两个由低到高、层次不同的巩固性习题,体现渐进性原则,希望学生能将知识转化为技能。让每一个学生获得成功,感受成功的喜悦。
安排三个层次的练习。
(一)课前预习
(二)典型例题分析
通过反馈使学生掌握重点内容。
(三)综合应用能力提高
既培养学生运用知识的能力,又培养学生的创新意识。引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。
函数模板(3)
对数函数的图像与性质优秀说课稿模板
一、说教材
1、教材的地位和作用
函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数在生产、生活实践中都有许多应用.本节课的学习使学生的.知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识.
2、教学目标的确定及依据
根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:
(1) 知识目标:理解对数函数的意义;掌握对数函数的图像与性质;初步学会用
对数函数的性质解决简单的问题.
(2) 能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、
分析、归纳等逻辑思维能力.
(3) 情感目标:通过指数函数和对数函数在图像与性质上的对比,使学生欣赏数
学的精确和美妙之处,调动学生学习数学的积极性.
3、教学重点与难点
重点:对数函数的意义、图像与性质.
难点:对数函数性质中对于在a>1与0
二、说教法
学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:
1、教学方法:
(1)启发引导学生实验、观察、联想、思考、分析、归纳;
(2)采用“从特殊到一般”、“从具体到抽象”的方法;
(3)渗透类比、数形结合、分类讨论等数学思想方法.
2、教学手段:
计算机多媒体辅助教学.
三、说学法
“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)类比学习:与指数函数类比学习对数函数的图像与性质.
(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索。
归纳得出对数函数的图像与性质.
(3)主动合作式学习:学生在归纳得出对数函数的图像与性质时,通过小组讨论。
使问题得以圆满解决.
四、说教程
1、温故知新
我通过复习细胞分裂问题,由指数函数 引导学生逐步得到对数函数的意义及对数函数与指数函数的关系:互为反函数.
设计意图:既复习了指数函数和反函数的有关知识,又与本节内容有密切关系。
有利于引出新课.为学生理解新知清除了障碍,有意识地培养学生
分析问题的能力.
2、探求新知
函数模板(4)
有关一次函数教学设计模板
篇一:一次函数全章教案_新人教版
19.1.1变量
教具;课件* 直尺*三角板 教学目标
知识与技能:理解变量与函数的概念以及相互乊间的兲系。增强对变量的理解
过程与方法:师生互动*讲练结合
情感态度世界观:渗透事物是运动的*运动是有规律的辨证思想 重点:变量与常量 难点:对变量的判断
教学媒体:多媒体电脑*绳圈,
教学说明:本节渗透找变量乊间的简单兲系*试列简单兲系式 教学设计: 引入:
信息1:当你坐在摩天轮上时*想一想*随着时间的变化*你离开地面的高度是如何变化的<
信息2:汽车以60km/h的速度匀速前迚*行驶里程为skm*行驶的时间为th*先填写下面的表格*在试用含t的式子表示s.
新课:
问题:(1)每张电影票的售价为10元*如果早场售出票150张*日场售出票205张*晚场售出票310张*三场电影的票房收入各多少元<设一场电影受出票x张*票房收入为y元*怎样用含x的式子表示y?
(2)在一根弹簧的下端悬挂中重物*改变幵记彔重物的质量*观察幵记彔弹簧长度的变化规律*如果弹簧原长10cm*每1kg重物使弹簧伸长0.5cm*怎样用含重物质量 m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)<
(3)要画一个面积为10cm2的圆*圆的半径应取多少<圆的面积为20cm2呢<怎样用含圆面积S的式子表示圆的半径r?
(4)用10m长的绳子围成长方形*试改变长方形的长度*观察长方形的面积怎样变化。记彔不同的长方形的长度值*计算相应的长方形面积的值*探索它们的变化规律*设长方形的长为xm,面积为Sm2,怎样用含x的式子表示S<
在一个变化过程中*我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。
挃出上述问题中的变量和常量。
范例:写出下列各问题中所满足的兲系式*幵挃出各个兲系式中*哪些量是变量*哪些量是常量<
(1) 用总长为60m的篱笆围成矩形场地*求矩形的面积S(m2)与
一边长x(m)乊间的兲系式;
(2) 购买单价是0.4元的铅笔*总金额y(元)与购买的铅笔的数
量n(支)的兲系;
(3) 运动员在4000m一圈的跑道上训练*他跑一圈所用的时间t(s)
与跑步的速度v(m/s)的兲系;
(4) 银行规定:五年期存款的年利率为2.79%,则某人存入x元本金
与所得的本息和y(元)乊间的兲系。
活动:1.分别挃出下列各式中的常量与变量.
(1) 圆的面积公式S=πr2; (2) 正方形的l=4a;
(3) 大米的单价为2.50元/千克*则购买的大米的数量x(kg)与金额
与金额y的兲系为y=2.5x.
2.写出下列问题的'兲系式*幵挃出不、常量和变量.
(1) 某种活期储蓄的月利率为0.16%,存入10000元本金*按国家
规定*取款时*应缴纳利息部分的20%的利息税*求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x乊
间的兲系式.
(2) 如图*每个图中是由若干个盆花组成的图案*每条边
(包括两个顶点)有n盆花*每个图案的花盆总数是S*求S与n乊间的兲系式
思考:怎样列变量乊间的兲系式<小结:变量与常量
19.1.2函数
教具 课件* 直尺*三角板
知识与技能:理解函数的概念*能准确识别出函数兲系中的自变量和函数
会用变化的量描述事物
过程与方法:师生互动*讲练结合
情感态度世界观:回用运动的观点观察事物*分析事物 重点:函数的概念 难点:函数的概念
教学媒体:多媒体电脑*计算器
教学说明:注意区分函数与非函数的兲系*学会确定自变量的取值范围 教学设计: 引入:
信息1:小明在14岁生日时*看到他爸爸为他记彔的以前各年周岁时体重数值表*你能看出小明各周岁时体重是如何变化的吗<
篇二:一次函数表格式教学设计
教学目标:
1、进一步理解一次函数和正比例函数的意义;
2、会画一次函数的图象,并能结合图象进一步研究相关的性质;
3、巩固一次函数的性质,并会应用。
教学重点:复习巩固一次函数的图象和性质,并能简单应用。 教学难点:在理解的基础上结合数学思想分析、解决问题。 学法:自主探究、合作交流。
教学准备:多媒体课件。
教学过程:
一、 知识回顾:
1、独立填空,交流纠错、讲解、补充。
当k为( )时,函数y=kx+4k-2 为正比例函数。
当k( )时,函数y=kx+4k-2 为一次函数。
引出知识点1:一次函数与正比例函数的概念(课件展示)
从解析式上看两者有何关系?正比例函数是特殊的一次函数,一次函数包含正比例函数。一次函数当k≠0, b= 0时是正比例函数。
2、学生画函数y=x-1的图象,说出画法,经过的象限以及变化趋势。 引出知识点2、3:一次函数的图象和性质(课件展示)
形状;一次函数的图象是一条直线。
画法:确定两个点就可以画一次函数图象。一次函数与x轴的交点坐标(-b/k ,0),与y轴的交点坐标(0, b ).
性质以及一次函数与正比例函数的图象关系。直线y=kx+b 可以看作是由直线y=kx 平移︱b ︱个单位得到的,当 b>0时,向 上 平移b个单位;当 b<0时,向 下 平移︱b ︱个单位。
说出一些一次函数的解析式,让学生迅速说出图象性质。
3、如果只有函数图像经过的点,能求出函数的解析式吗?
已知某一个函数的图象经过点P(3,5)和Q(-4,-9),求这个一次函数的解析式。学生完成填空。(课件展示)
引出知识点4:待定系数法确定一次函数解析式。
应用:已知一次函数y=kx+b(k≠0)满足当-1≤x≤3时,0≤y≤8,你能求出此一次函数的解析式吗?
先独立思考,然后相互交流,补充完整。指两名学生板演。 二:夯实基础:(课件展示)
1、一次函数y=-2x+4的图象经过( )象限,y随x的增大而( ),它的图像与x轴、y轴的坐标分别为( ),( ).
2、若一次函数y=(4-2m)x+2的图象经过A(x1,y1) 、B(x2,y2)两点,当x1<x2时,y1>y2,则m的取值范围是_____。
3、一次函数y=kx+b中,kb>0,且y随x的增大而减小,则它的图像大致是( )。
4.将函数y=-6x的图象a向上平移5个单位得到直线b.求直线b与两坐标轴所围成的三角形的面积。
指一名学生上台板演,其余学生经过独立完成、小组交流,然后集体订正。
三、 能力提升:
挑战自我:(课件展示)
已知函数y=kx+b的图象与另一个一次函数y=-2x-1的图象相交于y轴上的点A,且x轴下方的一点B(3,n)在一次函数y=kx+b的图象上,n满足关系n2=9.求这个函数的解析式.
学生先读题,获取信息,进行分析,独立思考后,可以小组交流,然后尝试解答。教师适时点拨。
四、课后小结:(课件展示)
这节课你学得愉快吗?都有哪些收获?你是否对一次函数的图象和性质有了进一步认识?
-
空白手抄报模板(必备7篇)
上一篇
-
支部记录模板(合集3篇)
下一篇